A Soluble Activin Receptor Type IIB Prevents the Effects of Androgen Deprivation on Body Composition and Bone Health

Alan Koncarevic, Milton Cornwall-Brady, Abigail Pullen, Monique Davies, Dianne Sako, June Liu, Ravindra Kumar, Kathleen Tomkinson, Theresa Baker, Ben Umiker, Travis Monnell, Asya V. Grinberg, Katia Liharska, Kathryn W. Underwood, Jeffrey A. Ucran, Elizabeth Howard, Joseph Barberio, Matthew Spais, Scott Pearsall, Jasbir Seehra, and Jennifer Lachey

Acceleron Pharma, Inc., Cambridge, Massachusetts 02139

Androgen deprivation, a consequence of hypogonadism, certain cancer treatments, or normal aging in men, leads to loss of muscle mass, increased adiposity, and osteoporosis. In the present study, using a soluble chimeric form of activin receptor type IIB (ActRIIB) we sought to offset the adverse effects of androgen deprivation on muscle, adipose tissue, and bone. Castrated (ORX) or sham-operated (SHAM) mice received either TBS [vehicle-treated (VEH)] or systemic administration of ActRIIB-mFc, a soluble fusion protein comprised of a form of the extracellular domain of ActRIIB fused to a murine IgG2aFc subunit. In vivo body composition imaging demonstrated that ActRIIB-mFc treatment results in increased lean tissue mass of 23% in SHAM mice [19.02 ± 0.42 g (VEH) versus 23.43 ± 0.35 g (ActRIIB-mFc), P < 0.00001] and 26% in ORX mice [15.59 ± 0.26 g (VEH) versus 19.78 ± 0.26 g (ActRIIB-mFc), P < 0.00001]. Treatment also caused a decrease in adiposity of 30% in SHAM mice [5.03 ± 0.48 g (VEH) versus 3.53 ± 0.19 g (ActRIIB-mFc), NS] and 36% in ORX mice [7.12 ± 0.53 g (VEH) versus 4.57 ± 0.28 g (ActRIIB-mFc), P < 0.001]. These changes were also accompanied by altered serum levels of leptin, adiponectin, and insulin, as well as by prevention of steatosis (fatty liver) in ActRIIB-mFc-treated ORX mice. Finally, ActRIIB-mFc prevented loss of bone mass in ORX mice as assessed by whole body dual x-ray absorptiometry and micro-computed tomography of proximal tibias. The data demonstrate that treatment with ActRIIB-mFc restored muscle mass, adiposity, and bone quality to normal levels in a mouse model of androgen deprivation, thereby alleviating multiple adverse consequences of such therapy. (Endocrinology 151: 4289–4300, 2010)
advanced (metastatic) prostate cancer and is also used as adjunct therapy for men receiving radiation for high-risk localized (nonmetastatic) disease (5). Androgen deprivation, which consists of irreversible surgical orchiectomy (ORX) or reversible pharmacologic treatment (“medical castration”), improves survival but can lead to a spectrum of effects that negatively impact quality of life. Prominent among these are: 1) fatigue with decreased muscle mass; 2) osteoporosis with increased risk of fracture; and 3) metabolic alterations with increased adiposity and increased risk of insulin resistance, diabetes, and cardiovascular disease (5–7). Compounding the problem, detrimental changes in these end points often occur with aging even before the commencement of androgen deprivation (8). Thus, there is a need for strategies to reduce the severity of effects that negatively impact quality of life. Prominent among these are: 1) fatigue with decreased muscle mass; 2) osteoporosis with increased risk of fracture; and 3) metabolic alterations with increased adiposity and increased risk of insulin resistance, diabetes, and cardiovascular disease (5–7). Compounding the problem, detrimental changes in these end points often occur with aging even before the commencement of androgen deprivation (8).

Material and Methods

Construction, expression, and purification of ActRIIB-mlgG2aFc (ActRIIB-mFc)

The ActRIIB extracellular domain (Ser19-Thr134) was obtained by PCR amplification. The purified PCR fragment and the pAIDT4 mlgG2a vector were ligated to create the expression construct, and the sequence was confirmed by double-stranded dideoxy sequencing. The pAIDT4-ActRIIB-mlgG2a construct was transiently transfected into HEK29293 cells. After 1 wk of growth at 37 °C, the conditioned media were harvested with a two-step column chromatography procedure. The purified ActRIIB-mFc (also termed RAP-031) was eluted from the column and then dialyzed into PBS.

Animals and experimental design

Forty male C57BL6 mice were randomly assigned to either sham-operated (SHAM) or castrated (ORX) experimental groups at 9 wk of age by Taconic Laboratories (Hudson, NY). The ORX and SHAM animals were allowed to recover for 7 d postsurgery at Taconic and then shipped to our site and allowed to acclimate for another 7 d. All procedures were reviewed and approved by Acceleron Pharma, Inc. Animal Care and Use Committee (IACUC), and all animals were housed in conventional cages with free access to food (regular chow) and water. Before any experimental procedures, all of the metal wound clips were removed and the animals were assessed for proper wound healing. The SHAM and ORX animals were then assigned to either a vehicle-treated group (VEH) or ActRIIB-mFc-treated group (ActRIIB-mFc) and received bi-weekly systemic intraperitoneal administration of TBS or ActRIIB-mFc (10 mg/kg) for 71 d. The ActRIIB-mFc concentration (10 mg/kg) and bi-weekly administration regimen were chosen based on in-house dose-response studies demonstrating maximal efficacy observed with the 10 mg/kg dose on lean tissue mass and pharmacokinetic studies performed in mice, respectively.

Body and terminal tissue weights

Body weights were measured twice per week using an electronic scale at the time of intraperitoneal administration of TBS or ActRIIB-mFc. At study termination date, tissues of interest (muscles, fat depots, and tibias) were surgically removed, weighed using an electronic scale, and properly stored for further analysis. At this time, the ORX animals were also examined to confirm complete removal of testes.

DEXA

Whole body composition was analyzed in vivo by dual-energy x-ray absorptiometry (DEXA) with a Lunar PIXImus densitometer (GE Medical Systems, Fitchburg, WI) using a high-
resolution digital picture (0.18 × 0.18 pixels, resolution of 1.6 line pairs per millimeter) and software version 2.10. The animals were anesthetized using isoflurane and scanned at study d 0 (before administration of ActRIIB-mFc), and then at d 28, 47, and 71 after treatment initiation. The manufacturer reports the image pixel size of 0.035 mm² where the total x-ray absorbance threshold for bone per pixel is applied automatically by the software. To evaluate experimental intrameasurement variability, we performed 10 consecutive scans of three different OVX mice and three SHAM mice. The average (mean) coefficients of variation (% CV) for bone mineral density were 1.37 for the OVX mice and 1.31 for the SHAM mice.

Nuclear magnetic resonance (NMR)

Body composition was analyzed at d 0 (before administration of ActRIIB-mFc), and then at d 14, 28, 47, and 71 after treatment initiation using the MiniSpec LF90 NMR Analyzer (Bruker, Woodlands, TX). The manufacturer reports the theoretical limit of detection/precision as ±0.1 g. To evaluate intrameasurement variability, we performed 10 consecutive scans of three different OVX mice and three SHAM mice. The average (mean) coefficients of variation (% CV) for lean tissue mass were 1.24 and 3.53 for the OVX and SHAM mice, respectively. The average (mean) coefficients of variation (% CV) for fat tissue mass were 0.72 and 3.6 for the OVX and SHAM mice, respectively.

Ex vivo assessment of bone structure by micro-computed tomography (µCT)

Cortical morphometry and trabecular structure of the tibia were evaluated after the experiment termination using a vivaCT 75 small-angle-cone-beam µCT imaging system (Scanco Medical AG, Bassersdorf, Switzerland) with resolution of 20.5–156 μm nominal (pixel size). Transverse CT slices (729) of tibia, starting from the distal end of proximal tibia metaphysis, were acquired using 20.5-μm isotropic voxel size (35 kVp, 145 μA, 2048 samples at 1000 projections per 360°, 350 msec integration time). Images were reconstructed, filtered, and a threshold segmenting adipose tissue was applied. The tissue density thresholds of detection were obtained through a combination of the manufacturer’s presets and visual inspection. These thresholds were kept constant for all of the evaluated specimens. Trabecular structures were quantified using the first 50 slices distal to the growth plate. Cortical bone parameters were evaluated using 50 slices located 400 slices distal to the growth plate. Trabecular morphometric parameters were computed using a direct three-dimensional approach. Bone volume/total volume fraction (BV/TV, %), trabecular thickness (TbTh, μm), trabecular separation (TbSp, μm), and trabecular number (TbN, mm⁻¹) were assessed. Cortical morphometric parameters were also computed using a direct three-dimensional approach. Bone area (BA, mm²), cortical thickness (C.Th, mm), endosteal perimeter (E.pm, mm), and periosteal perimeter (P.pm, mm) were assessed. To evaluate intrasample variability, we performed 10 consecutive scans of three different bone samples from OVX mice treated with TBS, OVX mice treated with ActRIIB-mFc, and SHAM mice treated with ActRIIB. The average (mean) coefficients of variation (% CV) for the trabecular bone parameters were as follows for OVX + TBS, OVX + ActRIIB-mFc, and SHAM + ActRIIB-mFc groups: 1.37, 0.98, and 1.73 for bone volume fraction; 1.47, 0.64, and 2.17 for trabecular number; 0.75, 0.98, and 0.88 for trabecular thickness; 1.96, 0.96, and 2.67 for trabecular separation, respectively. The average (mean) coefficients of variation (% CV) for the cortical bone parameters were all less than 1%.

In vivo assessment of abdominal adipose tissue content by µCT

Abdominal adiposity was evaluated in anesthetized animals by using the µCT system described above. Approximately 450–500 transverse CT slices starting from T13 thoracic vertebrae and ending at L5 lumbar vertebrae were acquired by using 41-μm isotropic voxel size (45 kVp, 177 μA, 1024 samples at 1000 projections per 360°, 350 msec integration time). Images were reconstructed, filtered, and a threshold segmenting adipose from other tissue was applied. The tissue density thresholds of detection were obtained through a combination of the manufacturer’s presets and visual inspection. These thresholds were kept constant for all of the evaluated specimens. To evaluate inrasample variability, we performed 10 consecutive abdominal scans of three different OVX and SHAM mice treated with TBS. The average (mean) coefficients of variation (% CV) for OVX and SHAM groups were as follows: 2.2 and 1.5 for visceral adiposity, and 1.8 and 4.5 for subcutaneous adiposity, respectively.

In vivo assessment of thigh muscle and adipose tissue content by µCT

Tissue composition of a mid-thigh was evaluated in anesthetized animals by using the micro-computed tomography system described above. Transverse CT slices starting from upper thigh (femoral head) down to middle region of patellar tendon were acquired by using 41-μm isotropic voxel size (45 kVp, 177 μA, 1024 samples at 1000 projections per 360°, 350 msec integration time). Images were reconstructed, filtered, and a threshold segmenting adipose from muscle and other tissue was applied.

Serum analysis

Upon study termination, the animals were euthanized using CO₂ and blood was collected into serum separation tubes. After 10-min centrifugation at 10,000 × g, serum was collected and used for subsequent immunoassays according to manufacturer instructions. Total adiponectin ELISA was purchased from Pharmacia (Fremont, CA), and the manufacturer reported the minimum detectable limit as 15.6 pg/ml and the assay linear range was 5 μg/ml to 320 μg/ml. The manufacturer also reported intrameasurement and intermeasurement reproducibility with coefficients of variation (% CV) of less than 10% for the mouse assay. Leptin ELISA was purchased from Crystal Chem (Downers Grove, IL). The reported detection range was from 0.2 to 12.8 ng/ml and intraassay as well as interassay % CVs were less than 10%. Insulin ELISA was purchased from Linco Research (St. Charles, MO). The manufacturer reported a linear detection range from 0.2 ng/ml to 10 ng/ml with mean intraassay and interassay % CV of less than 10%. Orchietomy was confirmed by measuring extracted serum testosterone levels as detected by RIA [Ligand Assay and Analysis Core, University of Virginia Center for Research in Reproduction, supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health Specialized Cooperative Centers Program in Reproduction and Infertility Research (SCCPR) Grant U54-HD28934]. For the testosterone assay the reportable range was from 14.8 ng/dl to 776.2 ng/dl, and inter-
measurement % CV was less than 10%. For all of the serum assays, the samples reading above the upper limit of detection were diluted and read again.

Histology

Upon study termination, adipose tissue depots and livers were surgically dissected and processed as follows. Adipose tissue depots were fixed overnight in 10% formalin and stored in 70% ethanol. The fixed adipose depots were then paraffin-embedded, sectioned into 10-μm sections, and processed for hematoxylin and eosin stain (H&E). Dissected livers were snap frozen in liquid nitrogen, sectioned into 10-μm sections, and processed for Oil Red O stain. All images of the stained sections were taken using a camera connected to a light microscope.

Data analysis

Comparisons between treatment groups over time (longitudinal) were made using ANOVA followed by LS Means Differences Tukey HSD post hoc analysis. Comparisons between groups at a single time point (cross) were made using one-way ANOVA Tukey HSD pair test. Differences were considered statistically significant when the two-tailed P value was ≤0.05. All data were analyzed with JMP 8.0 (The SAS Institute, Inc., Cary, NC). Data shown are means ± SEM.

Results

ActRIIB-mFc increases total body mass, total lean tissue mass, and individual muscle mass in SHAM and ORX mice

We investigated effects of ActRIIB-mFc in the orchiectomized (ORX) mouse, an animal model which mimics many of the changes in body composition associated with androgen deprivation therapy. As shown in Fig. 1A, ActRIIB-mFc increased the rate of body mass gain under ORX conditions as well as SHAM conditions relative to treatment with vehicle. By d 71, ORX mice weighed less (28.7 ± 0.75 g) than SHAM mice (30.1 ± 0.64 g, P < 0.05), while ActRIIB-mFc increased body weights of both

![FIG. 1. A, Body weight over time in mice as a function of ORX and ActRIIB-mFc treatment. Vehicle was Tris-buffered saline (TBS). Data shown are means ± SEM (n = 10 per group), and d 71 means that differ significantly (P < 0.05) are designated by different letters (a, b, c, and d) as determined by ANOVA (longitudinal) and followed by Tukey HSD post hoc analysis. B, Lean body mass over time in mice as a function of ORX and ActRIIB-mFc treatment. Vehicle was Tris-buffered saline (TBS). Measurements were made by NMR, data shown are means ± SEM (n = 10 per group), and d 71 means that differ significantly (P < 0.05) are designated by different letters (a, b, c, and d) as determined by ANOVA (longitudinal) and followed by Tukey HSD post hoc analysis. C, Tissue composition in mice as a function of ORX and ActRIIB-mFc treatment for 71 d. Representative micro-CT images of transverse sections at the mid-thigh level indicate muscle (red), fat (yellow), and bone (white). Scale bar, 5 mm. D, Muscle mass in mice as a function of ORX and ActRIIB-mFc treatment for 71 d. Pectoralis major, rectus femoris, and gastrocnemius muscles were surgically removed and weighed at study completion. Data shown are means ± SEM (n = 10 per group), and those that differ significantly (P < 0.05) are designated by different letters (a, b, and c) as determined by one-way ANOVA (cross) Tukey HSD pair test analysis.**
ORX (31.7 ± 0.54 g, P < 0.0001) and SHAM (34.8 ± 0.59 g, P < 0.0001) animals (Table 1 and Fig. 1A). This effect was due to a pronounced increase in lean body mass (Fig. 1B). Whereas ORX controls showed a slight decline in lean body mass (15.6 ± 0.26 g) during the course of treatment, ORX mice treated with ActRIIB-mFc displayed a marked increase in lean body mass (19.8 ± 0.26 g), attaining a mean value 25% significantly higher (P < 0.0001) than ORX control mice by study completion (Table 1 and Fig. 1B). A similar significant increase in lean body mass was observed under SHAM conditions for ActRIIB-mFc (23.4 ± 0.35 g) compared with vehicle (19.0 ± 0.42 g, P < 0.0001). The effects of ORX and ActRIIB-mFc on lean body mass were similar to the above also when lean body mass was expressed as a percentage of the total body mass (Table 1). Representative images of a mid-thigh region obtained by micro-computed tomography (micro-CT) illustrate the similarity of body composition in ORX mice treated with ActRIIB-mFc to that in SHAM controls (Fig. 1C). This increased lean body mass was due to a stimulating effect of ActRIIB-mFc on muscle mass under both ORX conditions and SHAM conditions. ActRIIB-mFc increased muscle masses of pectoralis major (pectoralis) by 68% (P < 0.0001) and 53% (P < 0.001), rectus femoris (femoris) by 54% (P < 0.0001) and 37% (P < 0.0001), and gastrocnemius muscles by 51% (P < 0.0001) and 47% (P < 0.0001), in both SHAM and ORX mice, respectively (Table 1 and Fig. 1D). ORX mice had smaller pectoralis major (191.27 ± 12.01 g) and biceps femoris muscles (156.76 ± 5.71 g) than SHAM mice (241.21 ± 9.97 g and 186.69 ± 4.20 g, respectively); however, these changes were not significant (P = 0.087 and P = 0.089, respectively). Gastrocnemius muscle weights did not change as a function of ORX. We also measured serum testosterone levels to confirm orchietomy and androgen deprivation in ORX mice and, as expected, testosterone concentrations were significantly lower in ORX mice (10.96 ± 0.63 ng/dl) compared with those in SHAM mice (723.98 ± 239.16 ng/dl, P < 0.001), with residual amounts in the ORX mice likely due to secretion by the adrenal gland.

ActRIIB-mFc prevents obese phenotype in ORX mice

ActRIIB-mFc also altered fat mass. As determined by NMR, mean total fat mass in ORX controls tripled over the course of the study (Fig. 2A) with the ORX mice ending up with 40% more of total fat (7.1 ± 0.53 g) than the SHAM mice (5.0 ± 0.48 g, P < 0.001). ActRIIB-mFc treatment in ORX mice significantly reduced this accumulation by more than 60% (P < 0.001) at the end of treatment, effectively maintaining mean fat mass under ORX conditions to levels (4.6 ± 0.28 g) that were not significantly different (P = 0.1) from SHAM controls (5.0 ± 0.48 g) at study completion (Table 1 and Fig. 2A). In addition, ActRIIB-mFc reduced the gain in mean fat mass observed in SHAM mice by end of study at d 71, 5.0 ± 0.48 g vs. 3.5 ± 0.19 g, respectively; however, this reduction did not reach significance (P = 0.09). The effects of both ORX and ActRIIB-mFc were analogous whether expressed as total fat mass or as percentage of the total body mass (Table 1). As shown by micro-CT imaging (Fig. 2B), the abdominal

Table 1. Summary of collected end points at d 71

<table>
<thead>
<tr>
<th></th>
<th>SHAM + TBS</th>
<th>SHAM + ActRIIB-mFc</th>
<th>ORX + TBS</th>
<th>ORX + ActRIIB-mFc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass (g)</td>
<td>30.1 ± 0.64</td>
<td>34.8 ± 0.59</td>
<td>28.7 ± 0.75</td>
<td>31.7 ± 0.54</td>
</tr>
<tr>
<td>Lean mass (g)</td>
<td>19.0 ± 0.42</td>
<td>23.4 ± 0.35</td>
<td>15.6 ± 0.26</td>
<td>19.8 ± 0.26</td>
</tr>
<tr>
<td>Lean mass (%)</td>
<td>63.2 ± 1.24</td>
<td>67.4 ± 0.75</td>
<td>54.7 ± 1.14</td>
<td>62.4 ± 0.78</td>
</tr>
<tr>
<td>Fat mass (g)</td>
<td>5.9 ± 0.48</td>
<td>3.5 ± 0.19</td>
<td>7.1 ± 0.53</td>
<td>4.6 ± 0.28</td>
</tr>
<tr>
<td>Fat mass (%)</td>
<td>16.6 ± 1.44</td>
<td>10.1 ± 0.48</td>
<td>24.6 ± 1.20</td>
<td>14.3 ± 0.74</td>
</tr>
<tr>
<td>Serum insulin (ng/ml)</td>
<td>2.20 ± 0.34</td>
<td>0.77 ± 0.17</td>
<td>1.20 ± 0.26</td>
<td>0.79 ± 0.15</td>
</tr>
<tr>
<td>Serum adiponectin (pg/ml)</td>
<td>47.12 ± 1.74</td>
<td>80.62 ± 4.68</td>
<td>126.29 ± 5.78</td>
<td>203.99 ± 19.26</td>
</tr>
<tr>
<td>Serum leptin (ng/ml)</td>
<td>13.38 ± 2.01</td>
<td>6.38 ± 0.71</td>
<td>18.56 ± 1.07</td>
<td>15.16 ± 1.35</td>
</tr>
<tr>
<td>Bone mineral density (g/cm²)</td>
<td>0.04704 ± 0.00053</td>
<td>0.04763 ± 0.00054</td>
<td>0.04503 ± 0.00049</td>
<td>0.04686 ± 0.00032</td>
</tr>
<tr>
<td>Bone volume fraction</td>
<td>0.2189 ± 0.0231</td>
<td>0.4864 ± 0.0252</td>
<td>0.0758 ± 0.0096</td>
<td>0.3044 ± 0.0190</td>
</tr>
<tr>
<td>Trabecular number (per mm)</td>
<td>3.5958 ± 0.0756</td>
<td>5.7999 ± 0.1048</td>
<td>1.9138 ± 0.0952</td>
<td>4.2188 ± 0.0992</td>
</tr>
<tr>
<td>Trabecular thickness (µm)</td>
<td>0.0860 ± 0.0049</td>
<td>0.1114 ± 0.0054</td>
<td>0.0714 ± 0.0030</td>
<td>0.0923 ± 0.0032</td>
</tr>
<tr>
<td>Trabecular separation (µm)</td>
<td>0.2924 ± 0.0070</td>
<td>0.1462 ± 0.0045</td>
<td>0.5973 ± 0.0228</td>
<td>0.2357 ± 0.0070</td>
</tr>
<tr>
<td>Pectoralis major (g)</td>
<td>241.21 ± 9.97</td>
<td>417.54 ± 21.36</td>
<td>191.27 ± 12.01</td>
<td>293.34 ± 18.77</td>
</tr>
<tr>
<td>Rectus femoris (g)</td>
<td>186.69 ± 4.20</td>
<td>281.53 ± 12.68</td>
<td>156.76 ± 5.71</td>
<td>222.61 ± 13.30</td>
</tr>
<tr>
<td>Gastrocnemius (g)</td>
<td>307.74 ± 5.91</td>
<td>473.69 ± 10.61</td>
<td>291.30 ± 7.77</td>
<td>428.73 ± 12.39</td>
</tr>
<tr>
<td>Cortical thickness (mm)</td>
<td>0.235 ± 0.0056</td>
<td>0.276 ± 0.0074</td>
<td>0.215 ± 0.0045</td>
<td>0.252 ± 0.0035</td>
</tr>
<tr>
<td>Cortical density (mg HA/ccm)</td>
<td>1089.0 ± 6.8</td>
<td>1107.6 ± 6.2</td>
<td>1066.1 ± 5.7</td>
<td>1094.7 ± 3.7</td>
</tr>
<tr>
<td>Endosteal circumference (mm)</td>
<td>2.17 ± 0.05</td>
<td>2.02 ± 0.04</td>
<td>2.16 ± 0.05</td>
<td>2.08 ± 0.05</td>
</tr>
<tr>
<td>Penosteal circumference (mm)</td>
<td>4.09 ± 0.07</td>
<td>4.24 ± 0.04</td>
<td>3.91 ± 0.07</td>
<td>4.16 ± 0.05</td>
</tr>
</tbody>
</table>

Data shown are means ± SEM at d 71 time point. Levels not connected by the same letter (a, b, c, and d) are significantly different.
fat content in ORX mice treated with ActRIIB-mFc was similar to that in SHAM controls. Consistent with these results, a histological analysis of fat depots indicated that ActRIIB-mFc reduced adipocyte size in sc and epididymal depots (Fig. 2C).

ActRIIB-mFc treatment alters circulating adipokine levels and prevents liver steatosis

ActRIIB-mFc treatment significantly reduced mean serum leptin concentrations (Fig. 3A) in SHAM (6.38 ± 0.71 ng/ml, *P* = 0.02), but not ORX (15.16 ± 1.35 ng/ml, *P* = 0.36) mice compared with their vehicle-treated counterparts (13.38 ± 2.01 ng/ml and 18.56 ± 1.07 ng/ml, respectively). Mean leptin concentrations were higher in ORX mice than their SHAM counterparts but did not reach statistical significance (*P* = 0.06). Consistent with previous findings that gonadectomy increases serum adiponectin levels in mice, mean adiponectin concentrations (Fig. 3B) were significantly higher (*P* < 0.0001) under ORX (126.29 ± 5.78 pg/ml) conditions than SHAM conditions (47.12 ± 1.74 pg/ml). ActRIIB-mFc treatment significantly increased mean serum adiponectin concentrations in both ORX (203.99 ± 19.26 pg/ml) and SHAM (80.62 ± 4.68 pg/ml) mice compared with the vehicle-treated groups (126.29 ± 5.78 pg/ml and 47.12 ± 1.74 pg/ml, respectively); however, only the effects in ORX mice reached statistical significance (*P* < 0.0001). The adiponectin concentrations in this study represent the sum of known oligomeric isoforms (total adiponectin). ActRIIB-mFc treatment also significantly reduced mean circulating insulin concentrations (Fig. 3C) under fed conditions compared with SHAM controls (0.77 ± 0.17 ng/ml vs. 2.20 ± 0.34 ng/ml, *P* < 0.005) but not ORX controls (0.79 ± 0.15 ng/ml vs. 1.2 ± 0.26 ng/ml, *P* = 0.07). Finally, liver triglyceride content visualized by Oil Red O was increased in ORX mice compared with SHAM mice (Fig. 3D), consistent with liver steatosis (i.e. fatty liver). This lipid-accumulating effect of ORX was prevented in ORX mice treated with ActRIIB-mFc as seen by fewer Oil Red O stained lipid droplets.

ActRIIB-mFc prevents bone loss in ORX mice

ActRIIB-mFc altered multiple indices of bone quantity and quality. As determined by whole-body analysis with DEXA, ActRIIB-mFc treatment increased bone mineral density under ORX conditions (from 0.04503 ± 0.00049 g/cm² to 0.04686 ± 0.00032 g/cm², *P* < 0.02) but did not have a significant effect on mean bone mineral density under SHAM conditions (0.04763 ± 0.00054 g/cm² vs. 0.04704 ± 0.00053 g/cm², *P* = 0.99), as determined on d
71 (Fig. 4A). As shown in Fig. 4, B–F, micro-CT analysis of trabecular bone in the proximal tibia at study termination (d 71) revealed that ActRIIB-mFc treatment maintained several bone parameters in ORX mice at levels observed in SHAM controls. With respect to ORX controls, these changes included: 1) a tripling of the mean bone volume fraction from 0.0758 ± 0.0096 to 0.3044 ± 0.0190 ($P < 0.0001$; Fig. 4B), 2) a doubling of mean number of trabeculae per millimeter from 1.9138 ± 0.0952 to 4.2188 ± 0.0992 ($P < 0.0001$; Fig. 4C), 3) increased mean trabecular thickness from $0.0714 \pm 0.0030 \mu m$ to $0.0923 \pm 0.0032 \mu m$ ($P < 0.01$; Fig. 4D), and 4) reduced mean trabecular separation from $0.5973 \pm 0.0228 \mu m$ to $0.2357 \pm 0.0070 \mu m$ ($P < 0.0001$; Fig. 4E). The similarity of tibial morphology in ORX mice treated with ActRIIB-mFc to that in SHAM controls is evident from representative images shown in Fig. 4F. For each of the foregoing tibia-based end points, ActRIIB-mFc treatment also produced changes in SHAM mice comparable in trend and magnitude to those in ORX mice (Fig. 4, B–F). In addition to improving the trabecular bone parameters, ActRIIB-mFc also improved cortical bone quality of tibias (Fig. 5). ORX mice had significantly lower cortical density (1066.1 ± 5.7 mg HA/ccm vs. 1089 ± 6.8 mg HA/ccm, $P < 0.05$), but not thickness (0.215 ± 0.004 mm vs. 0.235 ± 0.005 mm, $P = 0.06$), endosteal circumference (2.21 ± 0.05 mm vs. 2.22 ± 0.05 mm, $P = 0.10$), and periosteal circumference (3.91 ± 0.07 mm vs. 4.09 ± 0.07 mm, $P = 0.18$), than the SHAM controls (Fig. 5). ActRIIB-mFc significantly increased cortical thickness ($P < 0.002$), cortical density ($P < 0.01$), and periosteal circumference ($P < 0.05$) but not endosteal circumference ($P = 0.71$) in ORX mice (Fig. 5, A, B, D, and C, respectively). Endosteal circumference was not significantly different between any two experimental groups, even though it was trending toward lower values as a function of ActRIIB-mFc treatment in both SHAM and ORX mice (Fig. 5C). Changes in the qualitative properties of cortical bones as a function of ORX and

![Fig. 3](image-url)
ActRIIB-mFc treatment are also evident in the representative μCT images in Fig. 5E.

Discussion

In the current study we investigated the effects of a soluble activin type IIB receptor (ActRIIB-mFc) on multiple adverse effects of androgen deprivation in mice. The only intervention that has been shown to reverse all of the effects of castration is a direct testosterone or dihydroxytestosterone (DHT) supplementation. However, our study demonstrated that ActRIIB-mFc completely prevented muscle mass loss (Fig. 1), fat accumulation (Fig. 2), and bone loss (Figs. 4 and 5) in castrated mice.

The ability of ActRIIB-mFc treatment to overcome the attenuating effects of orchietomy on body mass, lean mass, and the specific muscles examined (pectoralis, femoris, and gastrocnemius) is consistent with its physico-

FIG. 4. A, Whole-body bone mineral density over time in mice as a function of ORX and ActRIIB-mFc treatment. Measurements were made by DEXA. Data shown are means ± SEM (n = 10 per group), and d 71 means that differ significantly (P < 0.05) are designated by different letters (a, b, c, and d) as determined by ANOVA (longitudinal) and followed by Tukey HSD post hoc analysis. B, Bone volume fraction in mouse tibia as a function of ORX and ActRIIB-mFc treatment for 71 d. C, Trabecular number in mouse tibia as a function of ORX and ActRIIB-mFc treatment for 71 d. D, Trabecular thickness in mouse tibia as a function of ORX and ActRIIB-mFc treatment for 71 d. E, Trabecular separation in murine tibia as a function of ORX and ActRIIB-mFc treatment for 71 d. For B–E, the measurements were made by micro-CT. Data shown are means ± SEM (n = 7 randomly selected out of the group of 10), and those that differ significantly (P < 0.05) are designated by different letters (a, b, c, and d) as determined by one-way ANOVA (cross) Tukey HSD pair test analysis. F, Tibial trabecular microarchitecture in mice as a function of ORX and ActRIIB-mFc treatment for 71 d. Shown are representative three-dimensional images of micro-CT-generated transverse sections through trabecular bone in the proximal tibia. Scale bar, 350 μm.
chemical properties. This soluble form of the activin type IIB receptor competes with the natural receptor for ligands which include myostatin (GDF-8), a negative regulator of muscle development. Myostatin overexpression results in a decrease in muscle mass in both human (17, 18) and animal (19–21) models, whereas myostatin deficiency results in an enhanced muscular phenotype (22–26). Myostatin signaling occurs via binding with high-affinity to ActRIIB. However, inhibition of ActRIIB signaling produces a greater increase in skeletal muscle than selective inhibition of myostatin alone (9), indicating that ActRIIB mediates both myostatin-dependent and independent regulation of lean tissue mass and could therefore provide a broader-based therapeutic target in the treatment of the muscle-wasting side-effect of androgen depletion strategies such as orchiectomy.

Concerning fat regulation, microarray analysis has shown that adipose tissue expresses activin type I and type IIA receptors. However, the role of these receptors in fat regulation is not well understood. Further studies are needed to elucidate the specific mechanisms by which activin receptors influence fat tissue development and function.
II receptors (27). In addition to inhibiting myogenesis in mesenchymal multipotent cells, GDF-8 also stimulated expression of early and late markers of adipogenesis (28). While GDF-8 has been shown to promote adipogenesis (13, 25), its role in mature adipocyte function is less clear. Mice lacking myostatin gene have less body fat and are resistant to diet-induced obesity (13). Inhibition of myostatin in muscle alone but not fat resulted in decreased fat mass and improved insulin sensitivity (29). Furthermore, a soluble ActRIIB administration reduced body fat in mice fed both regular chow and high-fat diets and resulted in improved insulin sensitivity (30). These current findings suggest that the effects of systemic ActRIIB signaling inhibition on body fat might be predominantly due to the secondary effects of growing muscle tissue on fat storages.

In addition to investigating the effects of ActRIIB-mFc on fat accumulation, we also demonstrated that ActRIIB-mFc promoted a preferred adipokine expression profile accompanied by lower fed insulin levels and prevented liver steatosis in castrated mice (Fig. 3). There is agreement that adiponectin levels generally vary inversely with fat mass and that adiponectin is an insulin-sensitizing adipokine with antidiabetic, antiatherogenic, and cardioprotective properties (31). In the present experiment, adiponectin concentrations were higher under ORX conditions than SHAM conditions, as expected from the known inhibitory effect of testosterone on adiponectin in mice (32). This has been suggested as the reason for obese ORX mice being less likely to develop insulin resistance than diet-induced obese mice. Also, leptin concentrations were higher in ORX mice than their sham counterparts, consistent with increased adiposity and the known inhibitory effect of testosterone on leptin (33).

ActRIIB has been implicated in the binding of a very diverse group of TGF-β family members in addition to myostatin (GDF-8) that regulate bone growth. These include activin A, bone morphogenetic protein (BMP)-7, and BMP-2 (34–37). In the current study we have demonstrated the ability of ActRIIB-mFc treatment to overcome the attenuating effects of orchietomy on bone quality. It has been suggested that GDF-8 and GDF-11 are derived from one ancestral gene (38). Even though GDF-8 and GDF-11 are highly related members of the TGF-β family of proteins, until recently it was believed that they have very different functions, with GDF-8 being involved only in muscle tissue maintenance and GDF-11 in formation and maintenance of axial skeleton. However, recent findings suggest that GDF-8 and GDF-11 have redundant functions in regulation of skeletal development (12). This study provides evidence for one potential mechanism explaining the effects of ActRIIB-mFc on bone in ORX and SHAM mice seen in our study. Furthermore, activin A is one of the most abundant proteins of the TGF-β/BMP family found in bone, and it has been proposed to be a negative regulator of bone formation. Activin A has a high affinity for both ActRIIA and ActRIIB. It has been demonstrated that treatment with a soluble derivative of ActRIIA leads to increased bone formation, bone mass, and bone strength both in gonad-intact mice and in ovariectomized mice with established bone loss (39). In addition, it was recently reported that soluble ActRIIA-mFc improved bone mass as well as structure in female cynomolgous macaques (40) due to both anabolic as well as antiresorptive mechanisms (41). We anticipate that the mechanism of the bone effects reported here with ActRIIB-mFc is due to blocking the same ligand/s as activins as with ActRIIA-mFc (37) and is therefore analogous to the anabolic mechanism responsible for the bone building effects reported with ActRIIA-mFc.

These results demonstrate that treatment with ActRIIB-mFc can alleviate detrimental effects of androgen deprivation on body composition in males. Under androgen-deprived conditions, ActRIIB-mFc reduced adiposity and increased bone quality, lean body mass, and muscle mass. For most end points examined, treatment with ActRIIB-mFc completely prevented detrimental changes associated with androgen deprivation, restoring levels at least to those in SHAM controls. In turn, treatment effects under SHAM conditions were generally comparable in direction and magnitude to those observed under androgen-deprived conditions. Effects of ActRIIB-mFc on body composition were accompanied by significantly elevated concentrations of circulating adiponectin, an important insulin-sensitizing adipokine with antidiabetic, antiatherogenic, and cardioprotective properties. Furthermore, these elevated serum adiponectin levels were correlated with lower insulin levels and lower liver triglyceride content. Taken together, these findings indicate that inhibition of ActRIIB signaling represents a promising adjunct therapeutic paradigm for men receiving androgen deprivation therapy for advanced or high-risk forms of prostate and other types of androgen-dependent cancers. Therefore, it is plausible that the comprehensive improvements in body composition, metabolic parameters, and bone health resulting from ActRIIB-mFc would further increase life quality as well as life expectancy of these patients. The current study investigated preventative effects of ActRIIB signaling inhibition in growing mice that were surgically androgen deprived from young age; therefore, future studies should investigate therapeutic potential of ActRIIB signaling inhibition in adult mice undergoing chemical androgen deprivation therapies, such as androgen antagonist
(bicalutamide and flutamide) or gonadotropin-releasing hormone (GnRH) analog therapies.

Acknowledgments

We thank Tim Ahern for his editorial comments and help with this manuscript. We also thank the manufacturing, bioanalytical, and protein purification groups at Acceleron Pharma, Inc. for their efforts.

Address all correspondence and requests for reprints to: Jennifer Lachey, 128 Sidney Street Cambridge, Cambridge, Massachusetts 02139. E-mail: jlachey@acceleronpharma.com.

Disclosure Summary: All authors are employees of and compensated by Acceleron Pharma, Inc.

References

drogens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51:2734–2741

Refer a new active member and you could receive a $10 Starbucks Card when they join.
www.endo-society.org/referral