Luspatercept (ACE-536) Increases Hemoglobin and Decreases Transfusion Burden and Liver Iron Concentration in Adults with Beta-Thalassemia: Preliminary Results from a Phase 2 Study

Antonio G. Piga, MD1, Silverio Perrotta, MD2, Angela Melpignano, MD3, Caterina Borgna-Pignatti, MD4, M. Rita Gamberini, MD4, Ersi Voskaridou, MD5, Vincenzo Caruso, MD6, Aldo Filosa, MD7, Yesim Aydinok, MD8, Antonello Pietrangelo, MD9, Xiaosha Zhang10, Ashley Bellevue10, Dawn M. Wilson10, Abderrahmane Laadem, MD11, Matthew L. Sherman, MD10 and Kenneth M. Attie, MD10

1A.O.U. San Luigi Gonzaga, Orbassano, Turin, 2A.O.U. Second University of Naples, 3Ospedale "A. Perrino", Brindisi, 4Arcispedale S.Anna, Cona, Ferrara, Italy; 5Laiko General Hospital, Athens, Greece; 6ARNAS Garibaldi, Catania, 7AORN "A. Cardarelli“, Naples, Italy; 8Ege University Children's Hospital, Bornova-Izmir, Turkey; 9CEMEF, Medicina 2, Modena, Italy; 10Acceleron Pharma, Cambridge, MA, USA; 11Celgene Corporation, Summit, NJ, USA.
β-Thalassemia

- β-thalassemia is an inherited anemia due to defective synthesis of β-globin
 - Excess unpaired α-globin chains lead to **ineffective erythropoiesis**
- Ineffective erythropoiesis is characterized by expanded RBC proliferation and elevated GDF11 and other TGF-β superfamily ligands and Smad 2/3 signaling

![Erythroid Precursors in Bone Marrow](image)
β-Thalassemia

- **β-thalassemia** is an inherited anemia due to defective synthesis of β-globin
 - Excess unpaired α-globin chains lead to **ineffective erythropoiesis**
- Ineffective erythropoiesis is characterized by expanded RBC proliferation and elevated GDF11 and other TGF-β superfamily ligands and Smad 2/3 signaling

![Diagram showing RBC maturation](image-url)
Ineffective Erythropoiesis Drives β-Thalassemia Complications

No approved drug therapy for anemia due to β-thalassemia

- **Luspatercept** is an experimental drug that is a recombinant fusion protein containing a modified extracellular domain (ECD) of the activin receptor type IIB (ActRIIB)
 - Binds to GDF11 and other ligands, inhibits Smad 2/3 signaling, and promotes late-stage erythroid differentiation
 - Increased hemoglobin levels in a Phase 1 healthy volunteer study

Modified ECD of ActRIIB receptor

- Fc domain of human IgG1 antibody

2. Attie, K et al.. Am J Hematol 2014
RAP-536 (Murine Luspatercept) Reduces Ineffective Erythropoiesis and Disease Burden in Mouse Model of β-thalassemia

Luspatercept → Ineffective Erythropoiesis

Anemia/Hemolysis → RBC Transfusions → Iron Overload

- Splenomegaly, EMH Masses, Bone Deformities, Osteoporosis
- Pulmonary Hypertension, Thrombotic events, Leg Ulcers
- Endocrinopathies, Liver disease, Heart Disease

Suragani R et al., Blood, 2014
Luspatercept β-Thalassemia Phase 2 Study - Overview

- A phase 2, multicenter, open-label, dose escalation study in adults with β-thalassemia
- **Primary efficacy objectives:**
 - Non-transfusion dependent (NTD): Hemoglobin increase ≥ 1.5 g/dL
 - Transfusion dependent (TD): Transfusion burden decrease over 12 wk
- **Secondary objectives:**
 - Safety
 - Liver iron concentration (by MRI)
 - Health-related Quality of Life (SF-36, FACT-An, NTD-PRO)
 - Biomarkers of erythropoiesis

NTD: Non-transfusion dependent patients (< 4 Units/8 wk, Hb < 10 g/dL)
TD: Transfusion dependent patients (≥ 4 Units/8 wk)
Luspatercept β-Thalassemia Phase 2 Study - Overview

- **Base study (n=64):** Up to 5 doses SC q 3 weeks for 3 months
 - Dose escalation phase (n=35): 0.2, 0.4, 0.6, 0.8, 1.0, 1.25 mg/kg
 - Expansion cohort (n=29): starting dose 0.8, titration up to 1.25 mg/kg
 - 59 patients were efficacy evaluable (5 patients ongoing with <12 weeks treatment)

- **Extension study (n=51):** additional 24 months of treatment

Data as of 25 Sept 2015
Baseline Characteristics

<table>
<thead>
<tr>
<th>Evaluable Patients</th>
<th>N=59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr, median (range)</td>
<td>37 (20-61)</td>
</tr>
<tr>
<td>Sex, male, n (%)</td>
<td>29 (49%)</td>
</tr>
<tr>
<td>Splenectomy, n (%)</td>
<td>41 (70%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Transfusion Dependent (NTD)</th>
<th>N=31 (53%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin, g/dL, median (range)</td>
<td>8.4 (6.5-9.6)</td>
</tr>
<tr>
<td>LIC, mg/g dw, mean ± SD</td>
<td>5.6 ± 3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transfusion Dependent (TD)</th>
<th>N=28 (47%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC Units/12 weeks, median (range)</td>
<td>8 (4-18)</td>
</tr>
<tr>
<td>LIC, mg/g dw, mean ± SD</td>
<td>4.5 ± 4.6</td>
</tr>
</tbody>
</table>

LIC: liver iron concentration (by MRI); dw: = dry weight

NTD: Non-transfusion dependent patients (< 4 Units/8 wk, Hb <10 g/dL)

TD: Transfusion dependent patients (≥ 4 Units/8 wk)
EFFICACY: Hemoglobin in NTD Patients with 3 Months Treatment Dose-Dependent Increase

- Mean hemoglobin increased steadily during 3 months of luspatercept treatment and returned to baseline in the absence of treatment during (n=24)
EFFICACY: Hemoglobin in NTD Patients with > 3 Mo Treatment Sustained Improvement

- Increase in mean hemoglobin over a 12-week period in NTD patients treated in the long-term extension study (n=17)
 - 65% (11/17) increased Hb ≥ 1.0 g/dL
 - 47% (8/17) increased Hb ≥ 1.5 g/dL
Efficacy: Reduction in Transfusion Burden, LIC in TD Patients

- Transfusion reduction from 12 weeks pre-treatment to a 12-week period on treatment:
 - 79% (22/28) had ≥ 20% reduction (study primary endpoint)
 - 75% (21/28) had ≥ 33% reduction; 57% (16/28) had ≥ 50% reduction

Data as of 25 Sept 2015

- 5 subjects discontinued before completing 12 weeks

Liver Iron Concentration (LIC): All TD patients received iron chelation therapy
 - 50% (4/8) with baseline LIC ≥ 5 mg/g dw had decrease in LIC ≥ 2 mg/g dw
 - 100% (14/14) with baseline LIC < 5 mg/g dw maintained LIC < 5

* 5 subjects discontinued before completing 12 weeks
Change in Liver Iron Concentration (MRI) at Wk 16 in NTD Patients

- 36% (5/14) with baseline LIC ≥ 5 mg/g dw had decrease in LIC ≥ 2 mg/g dw
- 100% (14/14) patients with baseline LIC < 5 mg/g dw maintained LIC < 5

Data as of 25 Sept 2015
EFFICACY: Quality of Life (SF-36, FACT-An) in NTD Patients Improvement Correlated with Increase in Hemoglobin

- **SF-36** (Short Form 36-item health survey)
 - Patient-Reported Outcome (PRO) survey of health status
 - Physical Component Summary (PCS) sub-score increase correlated with hemoglobin increase at Week 12 and Week 24 (p<0.05)

- **FACT-An** (Functional Assessment of Cancer Therapy – Anemia)
 - PRO assesses fatigue and anemia-related symptoms
 - Anemia subscale (20 items) increase correlated with hemoglobin increase:

 ![Graph showing correlation between hemoglobin change and FACT-An Anemia Score](image)

- **NTD**: Non-transfusion dependent patients (< 4 Units/8 wk, Hb < 10 g/dL)
- Data as of 25 Sept 2015
EFFICACY: Leg Ulcers \(\rightarrow\) Persistent Healing

- 3 patients with long-term, persistent leg ulcers experienced rapid healing with luspatercept treatment
 - 2 additional patients have had partial response
- Sustained healing in a patient treated over 2 years

Pre-Treatment

After 6 Weeks

After 2 Years

Data as of 25 Sept 2015
SAFETY: Summary

- No related serious adverse events
- Related grade 3 adverse events included: headache (n=1), bone pain (n=3), asthenia (n=2), myalgia (n=1)
- 6/59 (10%) patients discontinued early associated with an AE: bone pain (n=2), arthralgia, asthenia, cerebrovascular accident, headache (n=1 each)

Related Adverse Events (all grades) in ≥ 5% Patients, n (%)

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>NTD N=31</th>
<th>TD N=28</th>
<th>Overall N=59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone pain</td>
<td>8 (26%)</td>
<td>13 (46%)</td>
<td>21 (36%)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>3 (10%)</td>
<td>8 (29%)</td>
<td>11 (19%)</td>
</tr>
<tr>
<td>Headache</td>
<td>5 (16%)</td>
<td>6 (21%)</td>
<td>11 (19%)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>3 (10%)</td>
<td>7 (25%)</td>
<td>10 (17%)</td>
</tr>
<tr>
<td>Musculoskeletal pain</td>
<td>4 (13%)</td>
<td>4 (14%)</td>
<td>8 (14%)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>1 (3%)</td>
<td>5 (18%)</td>
<td>6 (10%)</td>
</tr>
<tr>
<td>Injection site pain</td>
<td>1 (3%)</td>
<td>3 (11%)</td>
<td>4 (7%)</td>
</tr>
<tr>
<td>Back pain</td>
<td>1 (3%)</td>
<td>2 (7%)</td>
<td>3 (5%)</td>
</tr>
<tr>
<td>Pain in Jaw</td>
<td>1 (3%)</td>
<td>2 (7%)</td>
<td>3 (5%)</td>
</tr>
</tbody>
</table>

NTD: Non-transfusion dependent patients (< 4 Units/8 wk, Hb < 10 g/dL)
TD: Transfusion dependent patients (≥ 4 Units/8 wk)

Data as of 25 Sept 2015
Luspatercept β-Thalassemia Phase 2 Study: Conclusions

- Favorable safety profile with no related serious adverse events
- Sustained hemoglobin increases in NTD patients and reduced transfusion burden in TD patients were observed in the majority of patients in the higher dose groups
- Reductions in liver iron concentration (LIC), improvement in Quality of Life scores, and rapid healing of leg ulcers were also observed
- These results support Phase 3 studies of luspatercept in patients with β-thalassemia (BELIEVE)
The BELIEVE Study
Phase 3 Study of Luspatercept in β-thalassemia

| Patient Population / Study Design | Randomized, double-blind, placebo-controlled study in adult β-thalassemia patients (including HbE/β-thal)
300 patients, randomized 2:1; luspatercept 1 mg/kg SC every 3 weeks, titration up to 1.25 mg/kg possible |
|-----------------------------------|--|
| Key Inclusion Criteria | Patients who receive 6-20 units of RBCs over past 24 weeks and no transfusion-free period ≥ 35 days (regularly transfused patients)
No ESA or hydroxyurea |
| Primary Efficacy Endpoint | Proportion of patients with ≥ 33% reduction in transfusion burden from weeks 13-24 compared to the 12 weeks preceding treatment |

Sponsored by Celgene
NCT02604433
Luspatercept β-Thalassemia Phase 2 Study: Acknowledgments

- **Investigators:** A Piga, A Melpignano, S Perrotta, C Borgna-Pignatti, MR Gamberini, V Caruso, E Voskaridou, A Filosa, A Pietrangelo

- **Sub-investigators:** I Alasia, M Limone, E Longoni, F Della Rocca, U Pugliese, I Tartaglione, L Manfredini, A Quarta, G Abbate, S Anastasi, R Lisi, M Casale, P Cinque, S Costantini, M Marsella, P Ricchi, A Spasiano

- **Acceleron:** K Attie, M Sherman, D Wilson, A Bellevue, C Rovaldi, B O’Hare, T Akers, X Zhang, J Desiderio, S Ertel, T Sacco

- **Celgene:** A Laadem, S Ritland, J Zou, N Chen

- **Chiltern:** C Lanza, F Van der Schueren, M Belfiore

- **Central Labs:** CRL, ICON, ILS

- **Independent Safety Reviewer:** E Neufeld

Sponsored by Acceleron Pharma and Celgene