Luspatercept Decreases Transfusion Burden and Liver Iron Concentration in Regularly Transfused Adults with Beta-Thalassemia

Antonio G. Piga, MD1, Silverio Perrotta, MD2, Angela Melpignano, MD3, Caterina Borgna-Pignatti, MD4, M. Rita Gamberini, MD4, Ersi Voskaridou, MD5, Vincenzo Caruso, MD6, Paolo Ricchi, MD7, Antonello Pietrangelo, MD8, Xiaosha Zhang9, Dawn M. Wilson9, Ashley Bellevue9, Abderrahmane Laadem, MD10, Matthew L. Sherman, MD9 and Kenneth M. Attie, MD9

1Turin University, Turin, 2Second University of Naples, Naples, 3Ospedale "A. Perrino", Brindisi, 4Arcispedale S.Anna, Cona, Ferrara, Italy; 5Laiko General Hospital, Athens, Greece; 6ARNAS Garibaldi, Catania, 7AORN "A. Cardarelli“, Naples, Italy; 8CEMEF, Medicina 2, Modena, Italy; 9Acceleron Pharma, Cambridge, MA, USA; 10Celgene Corporation, Summit, NJ, USA.
β-Thalassemia

- β-thalassemia is an inherited anemia due to defective synthesis of β-globin
 - Excess unpaired α-globin chains lead to **ineffective erythropoiesis**, characterized by apoptosis of maturing erythroblasts in the bone marrow

Image of erythroid precursors in bone marrow with unpaired α-globin chains forming hemichromes and inclusion bodies, leading to apoptosis.

Source: Rund D, Rachmilewitz E, NEJM 2005
β-Thalassemia

- β-thalassemia is an inherited anemia due to defective synthesis of β-globin
 - Excess unpaired α-globin chains lead to **ineffective erythropoiesis**, characterized by apoptosis of maturing erythroblasts in the bone marrow
- **Excess GDF**11 and other TGF-β superfamily **ligands** increase Smad 2/3 signaling and block RBC maturation, resulting in erythroid hyperplasia in the bone marrow

Increased EPO levels drive proliferation

Increased GDF signaling inhibits RBC maturation
Ineffective Erythropoiesis Drives β-Thalassemia Complications

Ineffective Erythropoiesis

Anemia/Hemolysis
- Splenomegaly, EMH Masses, Bone Deformities, Osteoporosis

RBC Transfusions
- Pulmonary Hypertension, Thrombotic events, Leg Ulcers

Iron Overload
- Endocrinopathies, Liver disease, Heart Disease

Iron chelation

No approved drug therapy for anemia due to β-thalassemia
Luspatercept Reduces Promotes Late-Stage Erythropoiesis and Reduces Disease Burden in Mouse Model of β-Thalassemia

- Luspatercept is an investigational drug that is a recombinant fusion protein containing a modified extracellular domain (ECD) of the activin receptor type IIb (ActRIIB)
 - Binds to GDF11 and other ligands, inhibits Smad 2/3 signaling, and promotes late-stage erythropoiesis
 - RAP-536 (murine luspatercept) reduced disease burden in mouse model of β-thalassemia
 - Increased hemoglobin levels in healthy volunteers and patients with myelodysplastic syndromes

Suragani R et al., Blood, 2014
Attie, K et al., Am J Hematol, 2014
Platzbecker U et al., EHA 2016, S131
Luspatercept β-Thalassemia Phase 2 Clinical Trials – Overview

- A phase 2, multicenter, open-label, study in adults with β-thalassemia
 - Non-transfusion dependent (NTD): < 4 units/8 wk and Hb < 10 g/dL
 - Transfusion dependent (TD): ≥ 4 units/8 wk

- Primary efficacy endpoints (over 8 or 12 wk)
 - TD: Transfusion burden decrease ≥ 20% or ≥ 50%
 - NTD: Hemoglobin increase ≥ 1.0 or ≥1.5 g/dL

- Secondary endpoints include:
 - Safety
 - Liver iron concentration (by MRI)
 - Health-related Quality of Life (FACT-An)
 - Biomarkers of erythropoiesis
Luspatercept Phase 2 Clinical Trials: Design

Dose-finding (Base) Study (n=64) 3 Months
NCT01749540

- TD: n=30
- NTD: n=34

Extension Study (n=51) → 2 years (ongoing)
NCT02268409

- TD: n=24
- NTD: n=27

Dose levels (administered SC q3 weeks)

- Base study dose escalation phase (n=35): 0.2, 0.4, 0.6, 0.8, 1.0, and 1.25 mg/kg and expansion cohort (n=29): starting dose 0.8 mg/kg, titration up to 1.25 mg/kg (total n=64)

- Extension study (n=51): 0.8-1.25 mg/kg

Follow-up

- All patients are followed for 2 months post-treatment completion or early discontinuation
Baseline Characteristics of Transfusion Dependent Patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base Study</th>
<th>Extension Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>N=30</td>
<td>N=24</td>
</tr>
<tr>
<td>Age, yr, median (range)</td>
<td>37.5 (21-54)</td>
<td>37.5 (22-55)</td>
</tr>
<tr>
<td>Sex, male, n (%)</td>
<td>12 (40%)</td>
<td>12 (50%)</td>
</tr>
<tr>
<td>Splenectomy, n (%)</td>
<td>20 (67%)</td>
<td>16 (67%)</td>
</tr>
<tr>
<td>RBC Units/12 weeks, median (range)</td>
<td>8 (4-18)</td>
<td>8 (4-15)</td>
</tr>
<tr>
<td>Liver iron concentration (LIC), mg/g dry wt, mean ± SD (n=29)</td>
<td>4.9 ± 5.4</td>
<td>5.1 ± 5.3</td>
</tr>
<tr>
<td>Duration of treatment, weeks (range)</td>
<td>--</td>
<td>6-71 (ongoing)</td>
</tr>
</tbody>
</table>
Reduction in Transfusion Burden

- Transfusion reduction from 12 weeks pre-treatment to any 12-wk period on treatment

<table>
<thead>
<tr>
<th>% Reduction in RBC Units Transfused</th>
<th>Patients with Reduction in Transfusion Burden, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Study N=30</td>
</tr>
<tr>
<td>20% reduction</td>
<td>24 (80%)</td>
</tr>
<tr>
<td>33% reduction</td>
<td>20 (67%)</td>
</tr>
<tr>
<td>50% reduction</td>
<td>16 (53%)</td>
</tr>
</tbody>
</table>
Reduction in Transfusion Burden in Patients in Extension Study

- Transfusion reduction from 12 weeks pre-treatment to any 12-wk period on treatment
- Duration of ≥ 33% reduction ranged from 12 to 48+ weeks

Baseline Units/12 Wks:

<table>
<thead>
<tr>
<th>Units/12 Wks</th>
<th>Baseline</th>
<th>14</th>
<th>15</th>
<th>12</th>
<th>12</th>
<th>8</th>
<th>7</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>7</th>
<th>5</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>6</th>
<th>8</th>
<th>8</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Change in RBC Units Transfused</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-10</td>
<td>-20</td>
<td>-30</td>
<td>-40</td>
<td>-50</td>
<td>-60</td>
<td>-70</td>
<td>-80</td>
<td>-90</td>
<td>-100</td>
<td></td>
</tr>
</tbody>
</table>

* 1 subject discontinued before completing 12 weeks, not shown
Change in Liver Iron Concentration (MRI) in TD Patients

- ~50% patients with baseline LIC ≥ 5 mg/g dw achieved ≥ 2mg/g dw
Safety Summary – Adverse Events in TD Patients

- No related serious adverse events
- Related grade 3 adverse events included: bone pain (n=2 base, n=1 extension), asthenia (n=2 base) and myalgia (n=1 extension)
- Favorable safety profile for luspatercept in patients with β-thalassemia was maintained in long-term extension study

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>Related AEs (all grades) in >10% TD Patients, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Study N=30</td>
</tr>
<tr>
<td>Bone pain</td>
<td>15 (50%)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>8 (27%)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>6 (20%)</td>
</tr>
<tr>
<td>Headache</td>
<td>6 (20%)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>5 (17%)</td>
</tr>
<tr>
<td>Musculoskeletal pain</td>
<td>4 (13%)</td>
</tr>
</tbody>
</table>

TD: Transfusion dependent patients (≥ 4 Units/8 wk)
Luspatercept in Transfusion-Dependent β-Thalassemia

- Luspatercept was generally safe and well-tolerated with no related serious adverse events
- Reduced transfusion burden was observed in the majority of TD patients
- Reductions in liver iron concentration (LIC) were also observed in patients on iron chelators with elevated LIC at baseline
- These results supported the initiation of a Phase 3 study of luspatercept in TD patients with β-thalassemia (The BELIEVE Study, NCT02604433)
The BELIEVE Study
Phase 3 Study of Luspatercept in β-thalassemia: NOW ENROLLING

| Patient Population / Study Design | Randomized, double-blind, placebo-controlled study in adult β-thalassemia patients (including HbE/β-thal)
| | 300 patients, randomized 2:1; luspatercept 1 mg/kg SC every 3 weeks, titration up to 1.25 mg/kg possible |
| Key Eligibility Criteria | Patients who receive 6-20 units of RBCs over past 24 weeks and no transfusion-free period ≥ 35 days (regularly transfused patients)
| | No ESA or hydroxyurea |
| Primary Efficacy Endpoint | Proportion of patients with ≥ 33% reduction in transfusion burden from weeks 13-24 compared to the 12 weeks preceding treatment |

Sponsored by Celgene in collaboration with Acceleron
NCT02604433
Luspatercept β-Thalassemia Phase 2 Study: Acknowledgments

- **Investigators:** A Piga, A Melpignano, S Perrotta, C Borgna-Pignatti, MR Gamberini, V Caruso, E Voskaridou, A Filosa, P Ricci, A Pietrangelo
- **Sub-investigators:** I Alasia, M Limone, E Longoni, F Della Rocca, U Pugliese, I Tartaglione, L Manfredini, A Quarta, G Abbate, S Anastasi, R Lisi, M Casale, P Cinque, S Costantini, M Marsella, P Ricchi, A Spasiano
- **Acceleron:** K Attie, M Sherman, D Wilson, A Bellevue, C Rovaldi, B O’Hare, T Akers, X Zhang, J Desiderio, S Ertel, T Sacco
- **Celgene:** A Laadem, S Ritland, J Zou, N Chen
- **Chiltern:** C Lanza, F Van der Schueren, M Belfiore
- **Central Labs:** CRL, ICON, ILS
- **Independent Safety Reviewer:** E Neufeld

Sponsored by Acceleron Pharma and Celgene