Luspatercept Increases Hemoglobin, Reduces Liver Iron Concentration and Improves Quality of Life in Non-Transfusion Dependent Adults with Beta-Thalassemia

Antonio G. Piga, MD1, Silverio Perrotta, MD1, Angela Melpignano, MD1, Caterina Borgna-Pignatti, MD1, M. Rita Gamberrini, MD1, Ersi Voskaridou, MD1, Vincenzo Caruso, MD1, Paolo Ricchi, MD1, Antonello Pietrangelo, MD2, Xiaoshia Zhang2, Dawn M. Wilson3, Ashley Bellevue4, Abderrahmane Laadem, MD5, Matthew L. Sherman, MD5 and Kenneth M. Attie, MD6
1Turin University, Turin; 2Second University of Naples, Naples; 3Ospedale "A. Perrino", Brindisi; 4Arcispedale S.Anna, Cona, Ferrara, Italy; 5Laiko General Hospital, Athens, Greece; 6ARNAS Garibaldi, Catania; 7AORN "A. Cardarelli", Naples, Italy; 8CEMEF, Medicina 2, Modena, Italy; 9Accelearo Pharma, Cambridge, MA, USA; 10Cellgene Corporation, Summit, NJ, USA.

Introduction

- β-thalassemia is an inherited anemia due to defective synthesis of β-globin
- Excess unpaired α-globin chains lead to ineffective erythropoiesis characterized by apoptosis of maturing erythroblasts in the bone marrow
- Excess GDF-11 and other TGF-β superfamily ligands increase Smad 2/3 signaling and block RBC maturation, resulting in erythroid hyperplasia in the bone marrow

Non-Clinical Studies

- Luspatercept is an investigational drug that is a recombinant fusion protein containing a modified extracellular domain of the activin receptor type IIB (ActRIIB)
- Luspatercept binds to GDF-11 and other ligands, inhibits Smad 2/3 signaling, and promotes late-stage erythroid differentiation
- Luspatercept increased hemoglobin levels in healthy volunteers and patients with myelodysplastic syndromes

Methods

- This is an ongoing, Phase 2, multicenter, open-label study in adults with β-thalassemia (data as of 11Mar2016)
- Non-transfusion dependent (NTD): ≤ 4 units/Wk, HB < 10 g/dL
- Transfusion dependent (TD): ≥ 4 units/Wk
- Primary efficacy endpoints (over 8 or 12 wk)
 - NTD: Hemoglobin increase ≥ 1.0 or 1.5 g/dL
 - TD: Transfusion burden decrease ≥ 20% or ≥ 50%
- Secondary endpoints include:
 - Safety, liver iron concentration (LIC, by MRI), health-related quality of life (FACT-An), biomarkers
- Data for TD patients are presented separately

Study Design

- Dose levels (SC q3 weeks)
 - Base study dose escalation phase (n=35): 0.2, 0.4, 0.6, 0.8, 1.0, and 1.25 mg/kg and expansion cohort (n=29): starting dose 0.8 mg/kg, stratified up to 1.25 mg/kg (total n=64)
 - Extension study (n=51): 0.8-1.25 mg/kg
 - Follow-up:
 - All patients are followed for 2 months post treatment completion or early discontinuation

NTD Patients: Baseline Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base Study N=34</th>
<th>Extension Study N=27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr, median (range)</td>
<td>38.5 (20-62)</td>
<td>37 (23-62)</td>
</tr>
<tr>
<td>Sex, male, n (%)</td>
<td>21 (62%)</td>
<td>17 (63%)</td>
</tr>
<tr>
<td>Spleenecotomy, n (%)</td>
<td>23 (68%)</td>
<td>18 (67%)</td>
</tr>
<tr>
<td>Hemoglobin, g/dL, median (range)</td>
<td>8.5 (6.5-9.8)</td>
<td>8.7 (7.6-9.8)</td>
</tr>
<tr>
<td>LIC, mg/g dry wt, mean ± SD</td>
<td>5.5 ± 3.8</td>
<td>4.9 ± 3.4</td>
</tr>
</tbody>
</table>

Baseline (n=64) 3 Months NCT01749540 2 years (ongoing) NCT02268409

NTD Patients: Hemoglobin Change

<table>
<thead>
<tr>
<th>Hemoglobin response over a 12 week period vs baseline</th>
<th>Patients Treated with ≥ 0.6 mg/kg with HB Response, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Study N=22</td>
<td>Extension Study N=27</td>
</tr>
<tr>
<td>Increase in mean HB ≥ 1.0 g/dL</td>
<td>Increase in mean HB ≥ 1.5 g/dL</td>
</tr>
<tr>
<td>14 (64%)</td>
<td>8 (36%)</td>
</tr>
<tr>
<td>21 (78%)</td>
<td>15 (56%)</td>
</tr>
</tbody>
</table>

NTD Patients: Quality of Life Assessments

- FACT-F is a 13-question patient-reported outcome (PRO) questionnaire (subset of FACT-An) used to assess anemia related symptoms (e.g., fatigue)
- 9/13 (69%) patients with baseline deficit (p<0.001) improved by ≥ 3 points (proposed minimal clinically important difference) at 24 wks (last observation carried forward)
- Increase in mean hemoglobin over a 12-week period correlated with increase in FACT-F (r=0.67, p=0.001)

NTD Patients: Liver Iron Concentration (MRI)

- 60% (3/5) of patients treated for ≥ 6 months with baseline LIC ≥ 5 had decrease in LIC ≥ 2 mg/g dw
- 89% (8/9) patients with baseline LIC < 5 maintained LIC < 5 mg/g dw

Safety Results

- No related serious adverse events in either study
- One grade 3 related adverse event of headache (n=1, extension)
- Reasons for discontinuation in NTD patients included non-compliance (n=2) and prohibited medication, headache, bone pain, lost to follow-up, and patient request (n=1 each)

Summary/Conclusions

- Luspatercept was generally safe and well-tolerated
- Sustained hemoglobin increase was observed in the majority of NTD patients in the higher dose groups and correlated with an improvement in Quality of Life
- Reductions in liver iron concentration were also observed
- These results support further investigation of luspatercept in patients with non-transfusion dependent β-thalassemia
- A Phase 3 study of luspatercept in regularly transfused patients with β-thalassemia is currently enrolling patients (The BELIEVE Study; NCT025604433)

References

1 Suranga R et al., Nature Med 2014
2 Attie, K et al., Am J Hematol 2014
3 Plattebecker U et al., EHA 2010 abstract S131
4 Suranga R et al., Blood, 2014
5 Martinez P et al., EHA 2016 abstract L536