Pharmacokinetics and Exposure–Response of Luspatercept in Patients With β-Thalassemia: Preliminary Results From Phase 2 Studies

Nianhang Chen,1 Abderrahmane Laadem,2 Dawn M. Wilson2, Xiaoshia Zhang,1 Matthew L. Sherman,1 Steve Rittland1, Kenneth M. Attie1

1Galloway Corporation, Barnsley, GA; 2Nicholson Pharma, Cambridge, MA, USA

INTRODUCTION
- A phase 1 trial established the production of a full-length chimaeric 2-stage erythrocyte differentiation, leading to ineffective erythropoiesis and anemia.
- Luspatercept (ACE-536) is a novel recombinant β3 integrin receptor that acts as a ligand to block linchpins of late-stage erythropoiesis in the TGF-β superfamily.
- Luspatercept has been shown to ameliorate ineffective erythropoiesis in a murine model of β-thalassemia.

METHODS
- Study Design
 - Pharmacokinetics, safety, and efficacy data were collected from two phase 2 studies (base and extension: NCT01749540 and NCT02268409) of luspatercept for the treatment of anemia in patients with β-thalassemia.
- Patients were categorized by transfusion burden at baseline:
 - NTD (non-transfusion-dependent): ≥ 1 g/dL increase in Hb
 - TD (transfusion-dependent): < 1 g/dL increase in Hb

OBJECTIVE
- To characterize the pharmacokinetics of luspatercept and to explore the exposure-response relationship for efficacy, and safety in patients with β-thalassemia.
- To establish the appropriate starting dose and dose-ranging in the phase 3 studies of luspatercept in β-thalassemia.

RESULTS
- INTRODUCTION
 - Phase 3 Starting Dose and Target AUC: Exposure–response modeling and pharmacokinetic simulation support a phase 3 starting dose of 1.0 mg/kg, with intra-patient dose escalation up to 1.25 mg/kg dependent upon patient response.
 - A phase 3 study of luspatercept for the treatment of moderately transfusion-dependent adults with β-thalassemia is ongoing (the BELIEVE study; ClinicalTrials.gov identifier: NCT03036042).

CONCLUSIONS
- Higher luspatercept serum exposure correlated with greater erythroid response.
- Exposure-response modeling and pharmacokinetic simulation support a phase 3 starting dose of 1.0 mg/kg, with intra-patient dose escalation up to 1.25 mg/kg dependent upon patient response.

REFERENCES

ACKNOWLEDGMENTS
This study was sponsored by Celgene Corporation, Summit, NJ and Acelson Pharma. Cambridge, MA, USA. The authors received editorial assistance and printing support in the preparation of this poster from Ducepta Medical (2 REPS, MD) supported by Celgene Corporation. The authors are fully responsible for all content and editorial decisions.

CORRESPONDENCE
Nianhang Chen – nchen@celgene.com

DISCLOSURES