Sotatercept for rebalancing BMP/TGF-beta/activin signaling in PAH

Paul B. Yu, M.D., Ph.D.
Associate Professor of Medicine, Harvard Medical School
Physician, Division of Cardiovascular Medicine
Brigham and Women’s Hospital
Boston, MA
Heritable PAH syndromes implicate the BMP9/sBMPR2/ALK1 signaling axis in pulmonary vascular disease

<table>
<thead>
<tr>
<th>Gene 1</th>
<th>Gene 2</th>
<th>HPAH</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMPRII</td>
<td>BMPR2</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>ALK1</td>
<td>ACVRL1</td>
<td>HHT1-HPAH</td>
<td></td>
</tr>
<tr>
<td>ENG</td>
<td>ENG</td>
<td>HHT2-HPAH</td>
<td></td>
</tr>
<tr>
<td>SMAD4</td>
<td>SMAD4</td>
<td>JP-HT</td>
<td></td>
</tr>
<tr>
<td>SMAD9</td>
<td>SMAD9</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>BMP9</td>
<td>GDF2</td>
<td>HHT5-HPAH</td>
<td></td>
</tr>
<tr>
<td>KCNK3</td>
<td>KCNK3</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>KCNA5</td>
<td>KCNA5</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>EIF2AK4</td>
<td>EIF2AK4</td>
<td>PVOD/PCH</td>
<td></td>
</tr>
<tr>
<td>CAV1</td>
<td>CAV1</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>KLF2</td>
<td>KLF2</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>AQP1</td>
<td>AQP1</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>SOX17</td>
<td>SOX17</td>
<td>HPAH</td>
<td></td>
</tr>
<tr>
<td>TBX4</td>
<td>TBX4</td>
<td>HPAH</td>
<td></td>
</tr>
</tbody>
</table>

Graf et al., Nat Comm 2018
Is PAH regulated by imbalanced BMP/TGF signaling?

BMP2 BMP4 BMP6 BMP7 BMP12 BMP9 BMP10 GDF8 GDF11 activin A activin B activin AC TGFβ1 TGFβ3 TGFβ2

ALK4/5/7 inhibitors
SD-208 (Zaiman et al, AJRCCM 2008)
IN-1233 (Long et al., Circ 2009)
SB525334 (Thomas et al., AJP 2009)

BMP9
Long L et al.
Nat Med 2015

ALK4/5/7 inhibitors
SD-208
(IN-1233
SB525334

SMAD 1/5/9
vascular homeostasis

SMAD 2/3
myogenic and fibrogenic differentiation

TGFBRII-Fc
Yung LM et al, AJRCCM 2016
What is the contribution of activin/GDF signaling?

SMAD 2/3
myogenic and fibrogenic differentiation

SMAD 1/5/9
vascular homeostasis

ALK1-Fc
Nikolic et al. AJRCCM 2018

ALK4/5/7 inhibitors
- SD-208 (Zaiman et al, AJRCCM 2008)
- IN-1233 (Long et al., Circ 2009)
- SB525334 (Thomas et al., AJP 2009)

ACTRIIA-Fc
(ACE-011/Sotatercept)

TGFBRII-Fc
Yung LM et al, AJRCCM 2016

Ivana Nikolic, MD

BMP2 **BMP4** **BMP6** **BMP7** **BMP12** **BMP9** **BMP10** **GDF8** **GDF11** **activin A** **activin B** **activin AC** **TGFβ1** **TGFβ3** **TGFβ2**
ACTRIIA-Fc attenuates PH progression in SU-Hx rats

RVSP (mmHg)

<table>
<thead>
<tr>
<th>SU-Hx</th>
<th>1</th>
<th>3</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>40</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

-one-way ANOVA dose trend $p = 0.03$

RV/(LV+S)

<table>
<thead>
<tr>
<th>SU-Hx</th>
<th>1</th>
<th>3</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

-one-way ANOVA dose trend $p = 0.05$

ACTRIIA-Fc (mg/kg twice weekly)

<table>
<thead>
<tr>
<th>SU-Hx</th>
<th>1</th>
<th>3</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.0</td>
<td>47.9</td>
<td>45.2</td>
<td>28.8</td>
</tr>
</tbody>
</table>

Non-muscularized
Partially muscularized
Completely Muscularized

*one-way ANOVA trend $p = 0.05$
ACTRIIA-Fc attenuates PV remodeling in SU-Hx rats

One-way ANOVA trend p = 0.05

% Fully Muscularized Vessels

ActRIIa-Fc (mg/kg twice weekly)

SU-Hx 1 3 10

(p = 0.05)

SU-Hx

1 mg/kg

SU-Hx + 1 mg/kg

SU-Hx + 3 mg/kg

SU-Hx + 10 mg/kg

Pai-1 mRNA level (Compared to control)

*
ACTRIIA-Fc inhibits Activin/GDF8/11-SMAD2/3 signaling and myogenic/fibrogenic differentiation of hPASMC

HPASMC

Control TGFβ1 GDF8 GDF11 Activin A BMP4

ACTRIIA-Fc - + - + - + - + - +

p-SMAD1 ➔
p-SMAD3 ➔

Total SMAD1

GAPDH

αSMA level (RLU)

Calponin level (RLU)
Comparison of ACTRIIA-Fc to approved therapies in PH models

<table>
<thead>
<tr>
<th>Monocrotaline - Prevention</th>
<th>SUGEN-Hypoxia - Prevention</th>
<th>SUGEN-Hypoxia – Therapeutic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>% Reduction in mPAP</td>
<td>% Reduction in RVH RV/(LV+S)</td>
</tr>
<tr>
<td>Bosentan^1</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>Sildenafil^4</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Beraprost NP^2</td>
<td>25^5</td>
<td>28</td>
</tr>
<tr>
<td>ACTRIIA-Fc^4</td>
<td>56</td>
<td>47</td>
</tr>
</tbody>
</table>

2. Akagi et al. J Cardiovasc Pharmacol 2016; 67; 290-298; Beraprost NP 150 μg/kg
4. RAP-011 and Sildenafil (60 mg/kg/d) were tested in same study at CorDynamics
5. Right ventricular systolic pressure

Sildenafil 50 mg/kg/d; Riociguat 10 mg/kg/d
Tadalafil 10 mg/kg/d; Macitentan 30 mg/kg/d
3. Current study; 10 mg/kg twice weekly
Summary

1. ACTRIIA-Fc (Sotatercept) is a Phase 2 asset tested in nearly 400 patients across 13 trials with excellent tolerability for muscle wasting and anemia.

2. ACTRIIA-Fc is a potential mechanism-targeted, non-vasodilator PAH therapy with potent anti-remodeling effects.

3. ACTRIIA-Fc inhibits signaling of activins/GDFs and may augment BMP9; multiple mechanisms of action and cellular targets being considered.

4. PULSAR, a phase 2 study in PAH began enrolling June 2018.
Acknowledgements

Yu laboratory – BWH
Lai-Ming Yung, PhD
Peiran Yang, PhD
Ivana Nikolic, MD
Geoff Bocobo, BS
Po-Sheng Chen, MD
Zachary Augur, BS
Teresa Dinter, BS
Megan McNeil, BS
Luca Troncone, PhD

Acceleron Pharma
Ravindra Kumar, Ph.D.
R. Scott Pearsall, Ph.D.
Gang Li, Ph.D.
Sachindra Joshi, Ph.D.
Dianne S. Sako, B.S.

Funding
NHLBI R01-HL131910
NHLBI R42-HL132742
Boston Biomedical Innovation Center
Fondation Leducq
Gilead PAH Scholar
Acceleron Pharma