Dose Escalation Results from a Phase 2 Study of ACE-083, a Local Muscle Therapeutic, in Patients with Facioscapulohumeral Muscular Dystrophy (FSHD)

Jeffrey Statland¹, Elena Bravver², Chafic Karam³, Lauren Elman⁴, Nicholas Johnson⁵, Nanette Joyce⁶, John T Kissel⁷, Perry B Shieh⁸, Lawrence Korngut⁹, Chris Weihl¹⁰, Rabi Tawil¹¹, Anthony Amato¹², Craig Campbell¹³, Angela Genge¹⁴, Georgios Manousakis¹⁵, Ashley Leneus¹⁶, Barry M Miller¹⁶, Chad E Glasser¹⁶, Robert K Zeldin¹⁶, Kenneth M Attie¹⁶

¹University of Kansas Medical Center, ²Carolinas Healthcare System Neurosciences Institute, ³Oregon Health & Science University, ⁴University of Pennsylvania, ⁵University of Utah, ⁶University of California Davis Medical Center, ⁷The Ohio State University, ⁸University of California, Los Angeles, ⁹University of Calgary, ¹⁰Washington University School of Medicine, ¹¹University of Rochester School of Medicine, ¹²Brigham and Women's Hospital, ¹³Children's Hospital London Health Sciences Centre, ¹⁴Montreal Neurological Institute, ¹⁵University of Minnesota, ¹⁶Acceleron Pharma
Disclosure Statement of Financial Interest

Grant/Research Support: NINDS U01; MDA Clinical Research Network Grant; FSH Society

Consultant: Acceleron Pharma, Fulcrum, Strongbridge

Advisory Board: Sarepta, Biogen, Acceleron, Fulcrum, PTC
Facioscapulohumeral Muscular Dystrophy (FSHD) – Introduction

- FSHD is characterized by slowly progressive weakness in muscles of the face, shoulder, upper arm, lower leg and trunk; can be asymmetric
- Disease is due to contraction/hypomethylation of D4Z4 repeat element on chromosome 4, leading to overexpression of DUX4 in muscle
 - Fewer repeats correlate with more severe disease
- Patient-reported symptoms with high prevalence and impact on quality of life:
 - Arms (biceps brachii)
 - 73% of all patients (71% bilateral)
 - Foot drop (tibialis anterior)
 - 69% of all patients (43% bilateral)

ACE-083 – A Locally-Acting Muscle Therapeutic

- ACE-083 is a locally-acting protein therapeutic in the TGF-β superfamily consisting of a modified form of human follistatin that binds GDF8 (myostatin) plus other negative regulators of skeletal muscle
- Designed to be locally injected in affected muscles to increase muscle mass and strength
- Increased muscle mass demonstrated in healthy volunteers\(^1\)
- Tibialis anterior and biceps were selected as initial muscle targets for a locally acting therapeutic

ACE-083 FSHD Study Design

Key Eligibility Criteria

- Age ≥ 18 years
- Genetically-confirmed FSHD1 or FSHD2, or, genetically-confirmed first-degree relative and clinical signs/symptoms of FSHD
 - Mild to moderate weakness in ankle dorsiflexion or elbow flexion in the injected muscle
 - No concomitant medications potentially affecting muscle strength/function

Treatment

- ACE-083 injection into tibialis anterior (TA) or biceps muscle, unilaterally or bilaterally, every 3 weeks

Part 1 – 3 mos open-label, N=36

- TA, Biceps
 - 150 mg unilateral
 - N=6/muscle
 - 200 mg unilateral
 - N=6/muscle
- TA 200 mg bilateral
- Biceps 240 mg unilateral
 - N=6/muscle

Part 2 – 6 mos placebo-controlled → 6 mos open-label, N=56

- 6 mos
 - ACE-083
 - 240 mg bilateral
 - N=14/muscle
 - Placebo
 - bilateral
 - N=14/muscle
- 6 mos
 - ACE-083
 - 240 mg bilateral
 - N=14/muscle
Baseline Characteristics
ACE-083 FSHD Study – Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>TA N=18</th>
<th>Biceps N=18</th>
<th>Overall N=36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>46 (19-63)</td>
<td>48 (20-69)</td>
<td>46 (19-69)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>8 (44%)</td>
<td>12 (67%)</td>
<td>20 (56%)</td>
</tr>
<tr>
<td>Female</td>
<td>10 (56%)</td>
<td>6 (33%)</td>
<td>16 (44%)</td>
</tr>
<tr>
<td>Duration of symptoms, yr</td>
<td>26 (4-40)</td>
<td>22 (4-55)</td>
<td>25 (4-55)</td>
</tr>
<tr>
<td>D4Z4 fragment size (kb), n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤18 (1-3 repeats)</td>
<td>2 (11.8%)</td>
<td>4 (22.2%)</td>
<td>6 (17.1%)</td>
</tr>
<tr>
<td>19-28 (4-6 repeats)</td>
<td>9 (52.9%)</td>
<td>11 (61.1%)</td>
<td>20 (57.1%)</td>
</tr>
<tr>
<td>>28 (>6 repeats)</td>
<td>6 (35.3%)</td>
<td>3 (16.7%)</td>
<td>9 (25.7%)</td>
</tr>
<tr>
<td>MMT MRC grade, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 to 3+</td>
<td>5 (28%)</td>
<td>1 (6%)</td>
<td>6 (17%)</td>
</tr>
<tr>
<td>4- to 4+</td>
<td>13 (72%)</td>
<td>17 (94%)</td>
<td>30 (83%)</td>
</tr>
<tr>
<td>Total muscle mass, g</td>
<td>69 (36-158)</td>
<td>76 (29-221)</td>
<td></td>
</tr>
<tr>
<td>Fat fraction, %</td>
<td>42 (12-82)</td>
<td>15 (6-79)</td>
<td></td>
</tr>
</tbody>
</table>

*N=17 for TA and N=35 for Overall (one TA patient diagnosed as FSHD2 hence no D4Z4 fragment size)

TA = tibialis anterior; MMT = manual muscle testing; MRC = Medical Research Council
D4Z4 = Region with repeated segments on chromosome 4 that regulates expression of DUX4 gene
Median (range), unless otherwise indicated; muscle data for treated sides only

Preliminary data as of 13 Mar 2019
ICCs estimated using three measurements on different days during the Screening/Baseline period show test-retest reliability.

<table>
<thead>
<tr>
<th>Population</th>
<th>Variable</th>
<th>Mean ± SD</th>
<th>ICC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA patients (n=18)</td>
<td>6-min walk test distance (m)</td>
<td>379.9 ± 117.4</td>
<td>0.98 (0.96, 0.99)</td>
</tr>
<tr>
<td></td>
<td>10m walk/run time (s)</td>
<td>8.1 ± 3.0</td>
<td>0.96 (0.92, 0.98)</td>
</tr>
<tr>
<td></td>
<td>4-stair climb time (s)</td>
<td>4.7 ± 4.1</td>
<td>0.94 (0.89, 0.97)</td>
</tr>
<tr>
<td></td>
<td>FSHD-HI total score</td>
<td>37.2 ± 24.4</td>
<td>0.97 (0.94, 0.99)</td>
</tr>
<tr>
<td></td>
<td>QMT (dorsiflexion MVIC) (N)</td>
<td>70.7 ± 42.0</td>
<td>0.85 (0.73, 0.92)</td>
</tr>
<tr>
<td>Biceps patients</td>
<td>PUL composite time (s)*</td>
<td>19.8 ± 4.9</td>
<td>0.86 (0.75, 0.92)</td>
</tr>
<tr>
<td>(n=18)</td>
<td>FSHD-HI total score</td>
<td>32.1 ± 23.2</td>
<td>0.97 (0.94, 0.98)</td>
</tr>
<tr>
<td></td>
<td>QMT (elbow flexion MVIC) (N)</td>
<td>102.5 ± 50.8</td>
<td>0.97 (0.94, 0.98)</td>
</tr>
</tbody>
</table>

*PUL composite time is sum of 4 timed tests from the middle level domain of the PUL test

ICC=intraclass correlation coefficient; CI=confidence interval; FSHD-HI=facioscapulohumeral muscular dystrophy-health index; N=newton; PUL=performance of upper limb test; QMT=quantitative muscle testing with hand-held dynamometer; SD=standard deviation; TA=tibialis anterior; MVIC=maximum voluntary isometric contraction

Preliminary data as of 13 Mar 2019
Baseline fat fraction was measured by 2-pt Dixon MRI scan for the entire tibialis anterior muscle

Significant correlations were observed for baseline fat fraction (%) and 10mW/R (s)

Baseline timed function tests correlated with each other and with the FSHD-Health Index ambulation subscore

10mW/R = 10-meter walk/run; 6MWD = 6-minute walk test distance; FSHD-HI = FSHD Health Index

Pearson correlation coefficients

$r = 0.60$
$p < 0.01$
$n = 18$

$r = -0.91$
$p < 0.0001$
$n = 18$

$r = -0.59$
$p = 0.01$
$n = 18$

Preliminary data as of 13 Mar 2019
Baseline fat fraction was measured by 2-pt Dixon MRI scan for the entire biceps muscle, and correlated significantly with manual or quantitative muscle strength testing (MMT-MRC grade or hand-held dynamometry, respectively).

Baseline performance of the upper limb (PUL) mid-level timed tests (s) correlated with the FSHD-Health Index total score.

FSHD-HI = FSHD Health Index; MMT = Manual Muscle Testing (MRC Grade); N=newton; PUL = performance of the upper limb; QMT = QMT=quantitative muscle testing with hand-held dynamometer
Pearson correlation coefficients, except FF vs MMT = Spearman correlation coefficient

Preliminary data as of 13 Mar 2019
Part 1 Dose Escalation Results
ACE-083 FSHD Study – Related Adverse Events
Part 1 TA and Biceps Cohorts

- ACE-083 was generally well tolerated in subjects treated for up to 3 months (5 doses)
- No serious adverse events
- Most common adverse events were injection site reactions and myalgia, mostly grade 1-2
 - One related grade 3 event of lower leg intramuscular swelling in the 200 mg TA cohort
- No clinically significant laboratory abnormalities on treatment

Possibly or Probably Related Adverse Events Occurring in ≥10% Patients

<table>
<thead>
<tr>
<th></th>
<th>Tibialis Anterior N=18</th>
<th>Biceps N=19*</th>
<th>Overall N=37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection site pain</td>
<td>12 (67%)</td>
<td>5 (26%)</td>
<td>17 (46%)</td>
</tr>
<tr>
<td>Injection site discomfort</td>
<td>5 (28%)</td>
<td>7 (37%)</td>
<td>12 (32%)</td>
</tr>
<tr>
<td>Injection site erythema</td>
<td>4 (22%)</td>
<td>5 (26%)</td>
<td>9 (24%)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>5 (28%)</td>
<td>4 (21%)</td>
<td>9 (24%)</td>
</tr>
<tr>
<td>Injection site bruising</td>
<td>2 (11%)</td>
<td>6 (32%)</td>
<td>8 (22%)</td>
</tr>
<tr>
<td>Injection site swelling</td>
<td>3 (17%)</td>
<td>5 (26%)</td>
<td>8 (22%)</td>
</tr>
</tbody>
</table>

*Includes one treated patient who discontinued prior to Study Day 43

Preliminary data as of 13 Mar 2019
Increases in total muscle volume were dose-dependent, with >15% increase observed at doses of 200-240 mg/muscle.
Fat fraction decreased, most notably in tibialis anterior cohorts (which had higher fat fraction at baseline)

Tibialis Anterior

- N=9
- N=5
- N=6
- N=6

Biceps

- N=11
- N=6
- N=6
- N=6

*excluding MRC grades <3 or >4+

Preliminary data as of 13 Mar 2019
ACE-083 FSHD Study – Contractile Muscle Volume by MRI

Part 1; Percent Change from Baseline to Day 106 (3 Weeks Post Last Dose)

- Increased muscle volume was due to increase in contractile muscle fraction
 - Contractile Muscle Volume = Total Muscle Volume * \([(100 – \text{Fat Fraction)}) / 100\]

Tibialis Anterior

- N=9
- N=5
- N=6
- N=6

Biceps

- N=11
- N=6
- N=6
- N=6

Preliminary data as of 13 Mar 2019

excepting MRC grades <3 or >4+
ACE-083 FSHD Study – Conclusions

- ACE-083, a locally-acting muscle therapeutic acting on myostatin and other muscle inhibitors, was generally well-tolerated when injected in the tibialis anterior or biceps over a 3-month treatment period in patients with FSHD.

- Baseline assessments demonstrated good test-retest reliability (ICC) and linear correlations of fat fraction by MRI with strength and timed function tests, and of timed function tests with each other and the FSHD-HI quality of life PRO.

- Increases in total muscle volume were dose-dependent, with >15% increase observed at doses of 200 to 240 mg/muscle.

- Fat fraction decreased in the tibialis anterior cohorts.

- These results support continued investigation of ACE-083 in neuromuscular diseases.
 - Placebo-controlled Part 2 of this Phase 2 FSHD study is ongoing (NCT02927080).
 - Placebo-controlled Phase 2 study in Charcot-Marie-Tooth disease is ongoing (NCT03124459).
Acknowledgements

The authors wish to thank the patients and their families for their participation and contributions as well as the following team members

Sub-Investigators: Richard Barohn, MD, Benjamin Brooks, MD, Russell Butterfield, MD, Nizar Chahin, MD, Mazen Dimachkie, MD, Miriam Freimer, MD, Melanie Glenn, MD, Stanley Iyadurai, MD, Omar Jawdat, MD, Eric Logigian, MD, Samantha LoRusso, MD, Craig McDonald, MD, Erin O’Ferrall, MD, Mamatha Pasnoor, MD, Rodney Li Pi Shan, MD, Amro Shino, MD, Francy Shu, MD, Chris Weihl, MD, Eugenio Zapata, MD, Colin Quinn, MD

Evaluators: Melissa Currence, Xi Dong, Lauren Draper, Katy Eichinger, Keegan Fitzgerald, Julaine Florence, Patricia Flynn, Molly Grames, Laura Herbelin, Scott Holsten, Brandi Johnson, Wendy Koesters, Jose Martinez, Melissa McIntyre, Alina Nicorici, Crystal O’Conner, Stephanie Poelker, Mohammed Sanjak, Cheryl Scholtes, Catherine Siener, Christy Skura

Clinical Site Coordinators: Colleen Anthonisen, Kelsey Moulton, Natalya Burlakova, Megan Christ, Bryant Gordon, Bridget Hoskins, Kianoush Kamali, Cynthia Lary, Leann Lewis, Jennifer Mabry, Ayla McCalley, Jennifer Petzke, Lisa Ranzinger, Kristen Roe, Alison Newell-Sturdivant, Linda Schimoeller

MedPace: Emily Birkmeyer, Shanshan Cui, Megan Kolthoff, Chad Leslie, Taylor Meece, Stephanie Porter, Georgiana Salyers, Richard Scheyer, MD, Wendy van den Branden

Acceleron: M Yuen, J Reynolds, B Leibo, J Sun, S Qamar, C Barron, M Fowler, S Harrison, T Nguyen, S Celikovic

VirtualScopics, VirtuSense, ATOM, University of Rochester (Chad Heatwole), ERT