

Abstract P666

Luspatercept Increases Hemoglobin and Reduces Transfusion Burden in Patients With Lower-Risk Myelodysplastic Syndromes (MDS): Long-Term Results From the Phase 2 PACE-MDS Study

Aristoteles Giagounidis, MD¹, Ulrich Germing, MD², Katharina Götze, MD³, Philipp Kiewe, MD⁴, Thomas Wolff, MD⁵, Karin Mayer, MD⁶, Joerg Chromik, MD⁷, Markus Radsak, MD⁸, Dawn Wilson⁹, Xiaosha Zhang⁹, Abderrahmane Laadem, MD¹⁰, Matthew L. Sherman, MD⁹, Kenneth M. Attie, MD⁹, Peter G. Linde, MD⁹, and Uwe Platzbecker, MD¹¹ ¹Marien Hospital Düsseldorf, Düsseldorf, ²Universitätsklinikum Düsseldorf, ³III. Department of Medical Oncology, Technical University of Munich, Klinikum rechs der Isar, Munich, ⁴Onkologischer Schwerpunkt am Oskar-Helene-Heim, Berlin, ⁵OncoResearch Lerchenfeld UG, Hamburg, ⁶Universitätsklinikum Frankfurt, Goethe Universität , Frankfurt/Main, ⁸Johannes Gutenberg-Universität, Mainz, Germany, ⁹Acceleron Pharma, Cambridge, MA, USA, ¹⁰Celgene Corporation, Summit, NJ, USA, and ¹¹Universitätsklinikum Carl Gustav Carus, Dresden, Germany

Introduction

- Anemia, a hallmark of MDS, is a significant clinical challenge to treat, particularly after failure of erythropoiesis-stimulating agents (ESAs)
- Defects in maturation of erythroid precursors (ineffective) erythropoiesis) lead to erythroid hyperplasia and anemia
- Diseases characterized by defective late-stage erythropoiesis may not respond to erythropoietin (EPO) or ESA therapy¹

Luspatercept-responsive

Luspatercept promotes terminal differentiation of erythroblasts in late-stage erythropoiesis²

EPO-dependent

Hemoglobin (Hb)

Modified ECD of ActRIIB receptor Fc domain of human IgG₁ antibody

- Luspatercept, a modified activin receptor type IIB (ActRIIB) fusion protein, acts as a ligand trap for GDF11 and other TGF-β family ligands to suppress Smad2/3 signaling; increased hemoglobin in healthy volunteers³
- In a murine model of MDS, murine analog RAP-536 corrected ineffective erythropoiesis, reduced erythroid hyperplasia, and increased hemoglobin¹

Study Design

A Phase 2, multicenter, open-label, 3-month doseescalation study in adults with lower-risk MDS, followed by a 5-year extension study

Base Study (N=95) 3 months NCT01749514	Extension Study (N=57) 5 years (ongoing) NCT02268383
Eligibility	Efficacy Endpoints
 Prior cohorts: RS+/RS- EPO > 500 IU/L EPO ≤ 500 IU/L and ESA refractory, intolerant, or ineligible New ESA-naïve cohorts: RS+, EPO ≤ 200 IU/L RS-, any EPO level 	 IWG (2006) HI-E: Hb increase ≥ 1.5 g/dL for all values over 8 weeks for patients with < 4 units/8 wk and Hb < 10 g/dL ≥ 4 RBC unit decrease over 8 weeks for patients with ≥ 4 units/8 wk
Treatment	Other Efficacy Endpoints
 Luspatercept 0.125 – 1.75 mg/kg (base study); 1.0 – 1.75 mg/kg (extension); SC q3 weeks All patients followed up for 2 months post last dose or early discontinuation 	 <u>RBC-TI:</u> RBC-transfusion independence ≥ 8 weeks Time to/duration of HI-E response

Parameter

Age, yr, media Sex, male, n (% Time since dia **Prior ESA treat Baseline EPO**, <200 IU/L 200-500 IU/ >500 IU/L

Ring sideroblas RS+ (RS ≥ 159 RS-Unknown

IWG HI-E eval Hemoglobir Transfusions

RBC-TI evalua Transfusion

at baseline

Category, n (% WHO 2006 Subty RCMD-RS RARS RCMD RAEB-1 CMML or MDS/ del(5q) RA RAEB-2 Missing

Median duration of treatment for RBC-TI responders: 14.7 months (range 2.8-32.4 months, ongoing)

Baseline Characteristics

Table 1. Demographics and Baseline Characteristics

Patients Treated at Dose Levels $\geq 0.75 \text{ mg/kg}$

	N=88
n (range)	72 (29-90)
ó)	56 (64%)
gnosis, yr, median (range)	2.0 (0.1-13.6)
tment, n (%)	45 (51%)
n (%)	
	43 (49%)
L	20 (23%)
	25 (28%)
st (RS) status, n (%)	
%)	56 (64%)
	29 (33%)
	3 (3%)
uable	n=88
n, g/dL, median (range)	8.3 (6-10)
s, units/8 wk, median (range)	2 (0-18)
ble	n=60
s, units/8 wk, median (range)	4 (2-18)

IWG HI-E evaluable: treated at dose levels \geq 0.75 mg/kg

RBC-TI evaluable: treated at dose levels ≥ 0.75 mg/kg with ≥ 2 units/8 weeks of RBC transfused

Table 2. Baseline MDS Categories

Patients Treated at Dose Levels $\geq 0.75 \text{ mg/kg}$

	N=88		N=88
pes		IPSS	
	30 (34%)	Low	37 (42%)
	15 (17%)	Int-1	49 (56%)
	13 (15%)	Int-2	2 (2%)
	11 (13%)	IPSS-R	
MPN	7 (8%)	Very Low	2 (2%)
	5 (6%)	Low	54 (61%)
	3 (3%)	Intermediate	25 (28%)
	1 (1%)	High	6 (7%)
	3 (3%)	Very High	1 (1%)

Erythroid Response

Figure 1. Duration of Transfusion Independence in RBC-TI

Responders Patients Treated at Dose Levels ≥ 0.75 mg/kg with Baseline RBC ≥ 2 Units

RBC-TI: RBC-transfusion independence \geq 8 weeks

Table 3. Response Rates by ESA Exposure Patients Treated at Dose Levels $\geq 0.75 \text{ mg/kg}$

ESA Status	IWG HI-E, n/N (%) N=88	RBC-TI, n/N (%) N=60
All patients	44/88 (50%)	23/60 (38%)
ESA-naïve	21/43 (49%)	12/25 (48%)
Prior ESA	23/45 (51%)	11/35 (31%)

Table 4. Response Rates by Baseline EPO and RS Status

Patients Treated at Dose Levels $\geq 0.75 \text{ mg/kg}$

Baseline EPO (IU/L)	RS Status	IWG HI-E, n/N (%) N=88	RBC-TI <i>,</i> n/N (%) N=60
<200	RS+	23/35 (66%)	13/21 (62%)
<200	RS-	4/8 (50%)	1/4 (25%)
200 - 500	RS+	7/12 (58%)	3/8 (38%)
	RS-	4/8 (50%)	3/5 (60%)
	RS+	5/9 (56%)	2/9 (22%)
>500	RS-	1/13 (8%)	1/11 (9%)
	Unknown	0/3 (0%)	0/2 (0%)

Figure 2. Reduction in Transfusion Burden

Patients Treated at Dose Levels ≥ 0.75 mg/kg

patient with insufficient post-baseline transfusion data not shown; 5 patients with transfusion burden increase by 2 units each not shown

Figure 3. Increase in Mean Hemoglobin in Low-Transfusion Patients Treated at Dose Levels ≥ 0.75 mg/kg **Burden Patients**

Low-transfusion-burden patients: < 4 units/8 wk, Hb <10 g/dL

Erythroid Response

Safety Summary

- Majority of adverse events (AEs) were grade 1 or 2
- Seven possibly related grade 3 non-serious AEs (in 1 patient each): ascites, blast cell count increase, blood bilirubin increase, bone pain, hypertension, platelet count increase, pleural effusion
- Four possibly related SAEs as of 15 June 2017: ataxia, general physical health deterioration, muscle weakness, and myalgia

Table 5. Possibly or Probably Related Adverse Events (Any Grade) in > 2 Patients

Preferred Term	n (%)
Headache	7 (7.4%)
Fatigue	6 (6.3%)
Hypertension	5 (5.3%)
Bone Pain	4 (4.2%)
Diarrhea	4 (4.2%)
Arthralgia	3 (3.2%)
Injection Site Erythema	3 (3.2%)
Myalgia	3 (3.2%)
Edema Peripheral	3 (3.2%)

N=95, all patients treated at all dose levels

Summary/Conclusions

- Lower-risk MDS patients treated with luspatercept continue to demonstrate robust increases in hemoglobin and decreases in transfusion burden (per IWG HI-E) and a high rate of RBC transfusion independence
 - Encouraging response rates observed across all baseline EPO levels
 - Response rates similar in patients who received prior ESA to those who are ESA naïve
 - IWG HI-E response rates similar in RS+ and RSpatients except when EPO > 500
- Luspatercept was generally well tolerated
- Data continue to support initiating a new Phase 3 trial in first-line patients

Acknowledgments/References

Sub-Investigators: O. Ottmann, K. Sockel, K. Trautmann-Grill, J. Middeke, C. Müller Thomas, F. Crespo, S. Gröpper, G. Bug, F. Lang, L. Wunderle, V. Janzen, J. Alt, J. Beck, G. Heß, T. Kindler, T. Wehler, D. Sasca, A. Kündgen, J. Neukirchen, O. Knigge A. Kirsch, V. Böhme, A. Mohr, U. Brandl, J. Heiders

Acceleron: C. Rovaldi, J. Oram, J. Desiderio, J. Reynolds, C. Barron, T. Akers, J. Maier, B. O'Hare, M. Tilahun

Celgene: J. Zhang, N. Chen **Central Labs:** D. Haase, H. Kreipe, U. Oelschlägel **References:**

- 1. Suragani R et al. Nat Med. 2014;20:408-14
- 2. Suragani R et al. Blood. 2014;123:3864-72 3. Attie K et al. Am J Hematol 2014;89:766

